Machine translationMachine translation is use of either rule-based or probabilistic (i.e. statistical and, most recently, neural network-based) machine learning approaches to translation of text or speech from one language to another, including the contextual, idiomatic and pragmatic nuances of both languages. History of machine translation The origins of machine translation can be traced back to the work of Al-Kindi, a ninth-century Arabic cryptographer who developed techniques for systemic language translation, including cryptanalysis, frequency analysis, and probability and statistics, which are used in modern machine translation.
Distributional semanticsDistributional semantics is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data. The basic idea of distributional semantics can be summed up in the so-called distributional hypothesis: linguistic items with similar distributions have similar meanings. The distributional hypothesis in linguistics is derived from the semantic theory of language usage, i.
PolysemyPolysemy (pəˈlɪsᵻmi or ˈpɒlᵻˌsiːmi; ) is the capacity for a sign (e.g. a symbol, a morpheme, a word, or a phrase) to have multiple related meanings. For example, a word can have several word senses. Polysemy is distinct from monosemy, where a word has a single meaning. Polysemy is distinct from homonymy—or homophony—which is an accidental similarity between two or more words (such as bear the animal, and the verb bear); whereas homonymy is a mere linguistic coincidence, polysemy is not.