Concept

Falsing

In telecommunications, falsing is a signaling error condition when a signal decoder detects a valid input although the implied protocol function was not intended. This is also known as a false decode. Other forms are referred to as talk-off. Signal decoders used in communication systems, such as telephony and two-way radio systems, detect communication protocol states by recognizing a variety of electrical, optical, or acoustic conditions. Misinterpretation of those conditions leads to communication errors. Proper detection of signaling is a compromise between acceptable error rates and cost of implementation. The engineering problem is to produce the simplest circuit that works reliably. A decoder generally tries to filter audio input to strip off every audio component except a sought-after, specific tone. In part, a decoder is a narrow bandpass filter. A signal that gets through the narrow filter is rectified into a DC voltage which is used to switch something on or off. Falsing sometimes occurs on a voice circuit when a human voice hits the exact pitch to which the tone decoder is tuned, a condition called talk-off. For the tone decoder to work reliably, the audio input level must be in the linear range of audio stages, (undistorted). A 1,500 Hz tone fed into an amplifier that distorts the tone could produce a harmonic at 3,000 Hz, falsely triggering a decoder that is tuned to 3,000 Hz. Examples of decoder falsing include: a telephone answering machine detects dial pulses from a rotary dial as ringing voltage, with the result that the answering machine answers in response to dialing. a two-way radio with an enabled CTCSS decoder turns on the receive audio for one or two syllables of a signal with a close-in-tone-frequency (but wrong) CTCSS tone. The person listening to the radio occasionally hears nonsense partial words from the receiver's speaker: "et"... "up"... a ringy telephone circuit with SF single-frequency signaling and poor level discipline drops calls because it sees harmonic frequencies or the distorted waveform as a valid "circuit idle" or "on-hook" SF signal.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.