In theoretical physics, a supercharge is a generator of supersymmetry transformations. It is an example of the general notion of a charge in physics. Supercharge, denoted by the symbol Q, is an operator which transforms bosons into fermions, and vice versa. Since the supercharge operator changes a particle with spin one-half to a particle with spin one or zero, the supercharge itself is a spinor that carries one half unit of spin. Depending on the context, supercharges may also be called Grassmann variables or Grassmann directions; they are generators of the exterior algebra of anti-commuting numbers, the Grassmann numbers. All these various usages are essentially synonymous; they refer to the grading between bosons and fermions, or equivalently, the grading between c-numbers and a-numbers. Calling it a charge emphasizes the notion of a symmetry at work. Supercharge is described by the Super-Poincaré algebra. Supercharge commutes with the Hamiltonian operator: [ Q , H ] = 0 So does its adjoint.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.