The secular variation of a time series is its long-term, non-periodic variation (see decomposition of time series). Whether a variation is perceived as secular or not depends on the available timescale: a variation that is secular over a timescale of centuries may be a segment of what is, over a timescale of millions of years, a periodic variation. Natural quantities often have both periodic and secular variations. Secular variation is sometimes called secular trend or secular drift when the emphasis is on a linear long-term trend. The term is used wherever time series are applicable in history, economics, operations research, biological anthropology, and astronomy (particularly celestial mechanics) such as VSOP (planets). The word secular, from the Latin root saecularis ("of an age, occurring once in an age"), has two basic meanings: I. Of or pertaining to the world (from which secularity is derived), and II. Of or belonging to an age or long period. The latter use appeared in the 18th century in the sense of "living or lasting for an age or ages". In the 19th century terms like secular acceleration and secular variation appeared in astronomy, and similar language was used in economics by 1895. In astronomy, secular variations are distinguished from periodic phenomena. In particular, astronomical ephemerides use secular to label the longest duration or non-oscillatory perturbations in the motion of planets, contrasted with periodic perturbations which exhibit repetition over the course of a given time frame. In this context it is referred to as secular motion. Solar System ephemerides are essential for the navigation of spacecraft and for all kinds of space observations of the planets, their natural satellites, stars and galaxies. Most of the known perturbations to motion in stable, regular, and well-determined dynamical systems tend to be periodic at some level, but in many-body systems, chaotic dynamics result in some effects which are unidirectional (for example, planetary migration).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)
Related concepts (3)
Geomagnetic reversal
A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged (not to be confused with geographic north and geographic south). The Earth's field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons. Reversal occurrences are statistically random.
Earth's orbit
Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi). Ignoring the influence of other Solar System bodies, Earth's orbit, also known as Earth's revolution, is an ellipse with the Earth-Sun barycenter as one focus with a current eccentricity of 0.0167.
Celestial mechanics
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. Modern analytic celestial mechanics started with Isaac Newton's Principia of 1687. The name "celestial mechanics" is more recent than that. Newton wrote that the field should be called "rational mechanics.