Affix grammarAn affix grammar is a kind of formal grammar; it is used to describe the syntax of languages, mainly computer languages, using an approach based on how natural language is typically described. The grammatical rules of an affix grammar are those of a context-free grammar, except that certain parts in the nonterminals (the affixes) are used as arguments. If the same affix occurs multiple times in a rule, its value must agree, i.e. it must be the same everywhere. In some types of affix grammar, more complex relationships between affix values are possible.
Equivalence (formal languages)In formal language theory, weak equivalence of two grammars means they generate the same set of strings, i.e. that the formal language they generate is the same. In compiler theory the notion is distinguished from strong (or structural) equivalence, which additionally means that the two parse trees are reasonably similar in that the same semantic interpretation can be assigned to both. Vijay-Shanker and Weir (1994) demonstrates that Linear Indexed Grammars, Combinatory Categorial Grammars, Tree-adjoining Grammars, and Head Grammars are weakly equivalent formalisms, in that they all define the same string languages.
Ogden's lemmaIn the theory of formal languages, Ogden's lemma (named after William F. Ogden) is a generalization of the pumping lemma for context-free languages. We will use underlines to indicate "marked" positions. Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as with strings u, v, w, x, and y, such that vx has at least one marked position, vwx has at most p marked positions, and for all .
Empty stringIn formal language theory, the empty string, or empty word, is the unique string of length zero. Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ.
Categorial grammarCategorial grammar is a family of formalisms in natural language syntax that share the central assumption that syntactic constituents combine as functions and arguments. Categorial grammar posits a close relationship between the syntax and semantic composition, since it typically treats syntactic categories as corresponding to semantic types. Categorial grammars were developed in the 1930s by Kazimierz Ajdukiewicz and in the 1950s by Yehoshua Bar-Hillel and Joachim Lambek.
Deterministic pushdown automatonIn automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages. Machine transitions are based on the current state and input symbol, and also the current topmost symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top.
Left recursionIn the formal language theory of computer science, left recursion is a special case of recursion where a string is recognized as part of a language by the fact that it decomposes into a string from that same language (on the left) and a suffix (on the right). For instance, can be recognized as a sum because it can be broken into , also a sum, and , a suitable suffix. In terms of context-free grammar, a nonterminal is left-recursive if the leftmost symbol in one of its productions is itself (in the case of direct left recursion) or can be made itself by some sequence of substitutions (in the case of indirect left recursion).