Concept

Field (geography)

Summary
In the context of spatial analysis, geographic information systems, and geographic information science, a field is a property that fills space, and varies over space, such as temperature or density. This use of the term has been adopted from physics and mathematics, due to their similarity to physical fields (vector or scalar) such as the electromagnetic field or gravitational field. Synonymous terms include spatially dependent variable (geostatistics), statistical surface ( thematic mapping), and intensive property (physics and chemistry) and crossbreeding between these disciplines is common. The simplest formal model for a field is the function, which yields a single value given a point in space (i.e., t = f(x, y, z) ) The modeling and analysis of fields in geographic applications was developed in five essentially separate movements, all of which arose during the 1950s and 1960s: Cartographic techniques for visualizing fields in thematic maps, including choropleth and isarithmic maps. In theoretical cartography, the concept of a "statistical surface" had gained wide acceptance by 1960, using the metaphor of a third dimension to conceptualize continuous quantitative variation in a variable. The statistical surface as a concept and term has persisted in cartography to the present. The quantitative revolution of geography, starting in the 1950s, and leading to the modern discipline of spatial analysis; especially techniques such as the Gravity model and models of potential. Although they did not specifically used the term field, they were incorporating the mathematics of fields from physics. The development of raster GIS models and software, starting with the Canadian Geographic Information System in the 1960s, which mapped fields such as land cover type. The technique of cartographic modeling, pioneered by Ian McHarg in the 1960s and later formalized for digital implementation in raster GIS by Dana Tomlin as map algebra.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.