In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964:
Personal fitness is the number of offspring that an individual begets (regardless of who rescues/rears/supports them)
Inclusive fitness is the number of offspring equivalents that an individual rears, rescues or otherwise supports through its behaviour (regardless of who begets them)
An individual's own child, who carries one half of the individual's genes, is defined as one offspring equivalent. A sibling's child, who will carry one-quarter of the individual's genes, is 1/2 offspring equivalent. Similarly, a cousin's child, who has 1/16 of the individual's genes, is 1/8 offspring equivalent.
From the gene's point of view, evolutionary success ultimately depends on leaving behind the maximum number of copies of itself in the population. Prior to Hamilton's work, it was generally assumed that genes only achieved this through the number of viable offspring produced by the individual organism they occupied. However, this overlooked a wider consideration of a gene's success, most clearly in the case of the social insects where the vast majority of individuals do not produce (their own) offspring.
Hamilton showed mathematically that, because other members of a population may share one's genes, a gene can also increase its evolutionary success by indirectly promoting the reproduction and survival of other individuals who also carry that gene. This is variously called "kin theory", "kin selection theory" or "inclusive fitness theory". The most obvious category of such individuals is close genetic relatives, and where these are concerned, the application of inclusive fitness theory is often more straightforwardly treated via the narrower kin selection theory.
Hamilton's theory, alongside reciprocal altruism, is considered one of the two primary mechanisms for the evolution of social behaviors in natural species and a major contribution to the field of sociobiology, which holds that some behaviors can be dictated by genes, and therefore can be passed to future generations and may be selected for as the organism evolves.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La psychologie évolutionniste est une discipline située au carrefour de la biologie, de la psychologie, de l'anthropologie, des sciences sociales et naturelles qui examine les traits psychologiques et
Explores the history, principles, and critiques of evolutionary psychology, emphasizing the adaptive function of characteristics and the evolutionary approach to understanding human behavior.
The gene-centered view of evolution, gene's eye view, gene selection theory, or selfish gene theory holds that adaptive evolution occurs through the differential survival of competing genes, increasing the allele frequency of those alleles whose phenotypic trait effects successfully promote their own propagation. The proponents of this viewpoint argue that, since heritable information is passed from generation to generation almost exclusively by DNA, natural selection and evolution are best considered from the perspective of genes.
Kin selection is a process whereby natural selection favours a trait due to its positive effects on the reproductive success of an organism's relatives, even when at a cost to the organism's own survival and reproduction. Kin selection can lead to the evolution of altruistic behaviour. Kin selection is related to the concept of inclusive fitness, which combines the number of offspring produced with the number an individual can ensure the production of by supporting others (weighted by the relatedness between individuals).
The green-beard effect is a thought experiment used in evolutionary biology to explain selective altruism among individuals of a species. The idea of a green-beard gene was proposed by William D. Hamilton in his articles of 1964, and got the name from the example used by Richard Dawkins ("I have a green beard and I will be altruistic to anyone else with green beard") in The Selfish Gene (1976).
Natural microbial populations often have complex spatial structures. This can impact their evolution, in particular the ability of mutants to take over. While mutant fixation probabilities are known to be unaffected by sufficiently symmetric structures, ev ...
Oxford2023
, , ,
Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cann ...
PUBLIC LIBRARY SCIENCE2019
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, imp ...