Summary
In biology, a cline (from the Greek κλίνειν klinein, meaning "to lean") is a measurable gradient in a single characteristic (or biological trait) of a species across its geographical range. First coined by Julian Huxley in 1938, the cline usually has a genetic (e.g. allele frequency, blood type), or phenotypic (e.g. body size, skin pigmentation) character. Clines can show smooth, continuous gradation in a character, or they may show more abrupt changes in the trait from one geographic region to the next. A cline refers to a spatial gradient in a specific, singular trait, rather than a collection of traits; a single population can therefore have as many clines as it has traits, at least in principle. Additionally, Huxley recognised that these multiple independent clines may not act in concordance with each other. For example, it has been observed that in Australia, birds generally become smaller the further towards the north of the country they are found. In contrast, the intensity of their plumage colouration follows a different geographical trajectory, being most vibrant where humidity is highest and becoming less vibrant further into the arid centre of the country. Because of this, clines were defined by Huxley as being an "auxiliary taxonomic principle"; that is, clinal variation in a species is not awarded taxonomic recognition in the way subspecies or species are. While the terms "ecotype" and "cline" are sometimes used interchangeably, they do in fact differ in that "ecotype" refers to a population which differs from other populations in a number of characters, rather than the single character that varies amongst populations in a cline. Clines are often cited to be the result of two opposing drivers: selection and gene flow (also known as migration). Selection causes adaptation to the local environment, resulting in different genotypes or phenotypes being favoured in different environments. This diversifying force is countered by gene flow, which has a homogenising effect on populations and prevents speciation through causing genetic admixture and blurring any distinct genetic boundaries.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.