In thermochemistry, the enthalpy of solution (heat of solution or enthalpy of solvation) is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution.
The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent. An ideal solution has a null enthalpy of mixing. For a non-ideal solution it is an excess molar quantity.
Dissolution by most gases is exothermic. That is, when a gas dissolves in a liquid solvent, energy is released as heat, warming both the system (i.e. the solution) and the surroundings.
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
When a saturated solution of a gas is heated, gas comes out of solution.
Dissolution can be viewed as occurring in three steps:
Breaking solute-solute attractions (endothermic), see for instance lattice energy U_\text{latt} in salts.
Breaking solvent-solvent attractions (endothermic), for instance that of hydrogen bonding
Forming solvent-solute attractions (exothermic), in solvation.
The value of the enthalpy of solvation is the sum of these individual steps.
Dissolving ammonium nitrate in water is endothermic. The energy released by solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice and the attractions between water molecules. Dissolving potassium hydroxide is exothermic, as more energy is released during solvation than is used in breaking up the solute and solvent.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient (which measures deviation from ideality) is equal to one for each component.
In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure. It is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a ), 333.55 kJ of energy is absorbed with no temperature change.
In chemistry, the lattice energy is the energy change upon formation of one mole of a crystalline ionic compound from its constituent ions, which are assumed to initially be in the gaseous state. It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.
The colorful wings of butterflies result from the interaction between light and the intricate chitinous nanostructures on butterflies’ scales. This study demonstrates that just by reproducing the chitinous ridges present in butterfly scales (i.e., without ...
Sensors capable of detecting and classifying volatile organic compounds (VOC) have been gaining more attention by the advent of internet-of-things (IoT) enabled devices and integration of various sensing elements into hand-held and portable devices. The re ...
EPFL2021
We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodyna ...