In neuroanatomy, the optic radiation (also known as the geniculocalcarine tract, the geniculostriate pathway, and posterior thalamic radiation) are axons from the neurons in the lateral geniculate nucleus to the primary visual cortex. The optic radiation receives blood through deep branches of the middle cerebral artery and posterior cerebral artery. They carry visual information through two divisions (called upper and lower division) to the visual cortex (also called striate cortex) along the calcarine fissure. There is one set of upper and lower divisions on each side of the brain. If a lesion only exists in one unilateral division of the optic radiation, the consequence is called quadrantanopia, which implies that only the respective superior or inferior quadrant of the visual field is affected. If both divisions on one side of the brain are affected, the result is a contralateral homonymous hemianopsia. The upper division: Projects to the upper bank of the calcarine fissure, called the cuneus Contains input from the superior retinal quadrants, which represents the inferior visual field quadrants Transection causes contralateral lower quadrantanopia Lesions that involve both cunei cause a lower altitudinal hemianopia (altitudinopia) The lower division: Loops from the lateral geniculate body anteriorly (Meyer's loop), then posteriorly, to terminate in the lower bank of the calcarine sulcus, called the lingual gyrus Contains input from the inferior retinal quadrants, which represents the superior visual field quadrants Transection causes contralateral upper quadrantanopia Transection of both lingual gyri causes an upper altitudinal hemianopia A distinctive feature of the optic radiations is that they split into two parts on each side: Note: In 2009, an anonymous medical doctor edited the "Optic Radiation" Wikipedia article and added the eponymous name "Baum's loop," referring to the dorsal bundle. Despite the information being unverified, this name subsequently entered scholarly articles and textbooks and persisted until three radiologists discovered the fabrication in 2020.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.