In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem or SMP) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a bijection from the elements of one set to the elements of the other set. A matching is not stable if:
In other words, a matching is stable when there does not exist any pair (A, B) which both prefer each other to their current partner under the matching.
The stable marriage problem has been stated as follows:
Given n men and n women, where each person has ranked all members of the opposite sex in order of preference, marry the men and women together such that there are no two people of opposite sex who would both rather have each other than their current partners. When there are no such pairs of people, the set of marriages is deemed stable.
The existence of two classes that need to be paired with each other (heterosexual men and women in this example) distinguishes this problem from the stable roommates problem.
Algorithms for finding solutions to the stable marriage problem have applications in a variety of real-world situations, perhaps the best known of these being in the assignment of graduating medical students to their first hospital appointments. In 2012, the Nobel Memorial Prize in Economic Sciences was awarded to Lloyd S. Shapley and Alvin E. Roth "for the theory of stable allocations and the practice of market design."
An important and large-scale application of stable marriage is in assigning users to servers in a large distributed Internet service. Billions of users access web pages, videos, and other services on the Internet, requiring each user to be matched to one of (potentially) hundreds of thousands of servers around the world that offer that service. A user prefers servers that are proximal enough to provide a faster response time for the requested service, resulting in a (partial) preferential ordering of the servers for each user.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This advanced undergraduate course treats basic principles on linear programming like the simplex algorithm, its complexity, and duality. Furthermore it gives an introduction on discrete optimization
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem. Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
This course introduces the theory and applications of optimization. We develop tools and concepts of optimization and decision analysis that enable managers in manufacturing, service operations, marke
A plethora of real world problems consist of a number of agents that interact, learn, cooperate, coordinate, and compete with others in ever more complex environments. Examples include autonomous vehicles, robotic agents, intelligent infrastructure, IoT de ...
Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...
We solve the Bin Packing problem in O^*(2^k) time, where k is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. O ...
Schloss Dagstuhl – Leibniz-Zentrum fur Informatik2022