A method for achieving a representation of an object within a data structure for a Computer Aided Design system employing a Medial Axis Transformation (MAT), the representation of the object comprising a set of adjacent bounded surface elements called MAT ...
We present the general notion of Borel fields of metric spaces and show some properties of such fields. Then we make the study specific to the Borel fields of proper CAT(0) spaces and we show that the standard tools we need behave in a Borel way. We also i ...
As Avez showed (in 1970), the fundamental group of a compact Riemannian manifold of nonpositive sectional curvature has exponential growth if and only if it is not flat. After several generalizations from Gromov, Zimmer, Anderson, Burger and Shroeder, the ...
We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distance ...
Using arguments developed by De Giorgi in the 1950's, it is possible to prove the regularity of the solutions to a vast class of variational problems in the Euclidean space. The main goal of the present thesis is to extend these results to the more abstrac ...
In the first chapter, we characterize p-adic linear algebraic groups with the Haagerup Property. We also characterize connected Lie groups having the Haagerup Property viewed as discrete groups, and we provide an example of a finitely presented group not h ...
In a seminal paper published in 1946, Erd ̋os initiated the investigation of the distribution of distances generated by point sets in metric spaces. In spite of some spectacular par- tial successes and persistent attacks by generations of mathe- maticians, ...
This work is dedicated to the study of Borel equivalence relations acting on Borel fields of CAT(0) metric spaces over a standard probability space. In this new framework we get similar results to some theorems proved recently by S. Adams-W. Ballmann or N. ...
We consider the capacitated -center problem. In this problem we are given a finite set of locations in a metric space and each location has an associated non-negative integer capacity. The goal is to choose (open) locations (called centers) and assign each ...