Deterministic context-free languageIn formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are the context-free languages that can be accepted by a deterministic pushdown automaton. DCFLs are always unambiguous, meaning that they admit an unambiguous grammar. There are non-deterministic unambiguous CFLs, so DCFLs form a proper subset of unambiguous CFLs. DCFLs are of great practical interest, as they can be parsed in linear time, and various restricted forms of DCFGs admit simple practical parsers.
Earley parserIn computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968 (and later appeared in an abbreviated, more legible, form in a journal).
CYK algorithmIn computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming. The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be algorithmically transformed into a CNF grammar expressing the same language .
String operationsIn computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. A string is a finite sequence of characters. The empty string is denoted by . The concatenation of two string and is denoted by , or shorter by . Concatenating with the empty string makes no difference: .
Pushdown automatonIn the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack. Pushdown automata are used in theories about what can be computed by machines. They are more capable than finite-state machines but less capable than Turing machines (see below). Deterministic pushdown automata can recognize all deterministic context-free languages while nondeterministic ones can recognize all context-free languages, with the former often used in parser design.
Pumping lemma for context-free languagesIn computer science, in particular in formal language theory, the pumping lemma for context-free languages, also known as the Bar-Hillel lemma, is a lemma that gives a property shared by all context-free languages and generalizes the pumping lemma for regular languages. The pumping lemma can be used to construct a proof by contradiction that a specific language is not context-free. Conversely, the pumping lemma does not suffice to guarantee that a language is context-free; there are other necessary conditions, such as Ogden's lemma, or the Interchange lemma.
Deterministic pushdown automatonIn automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages. Machine transitions are based on the current state and input symbol, and also the current topmost symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top.
Chomsky normal formIn formal language theory, a context-free grammar, G, is said to be in Chomsky normal form (first described by Noam Chomsky) if all of its production rules are of the form: A → BC, or A → a, or S → ε, where A, B, and C are nonterminal symbols, the letter a is a terminal symbol (a symbol that represents a constant value), S is the start symbol, and ε denotes the empty string. Also, neither B nor C may be the start symbol, and the third production rule can only appear if ε is in L(G), the language produced by the context-free grammar G.
Ogden's lemmaIn the theory of formal languages, Ogden's lemma (named after William F. Ogden) is a generalization of the pumping lemma for context-free languages. We will use underlines to indicate "marked" positions. Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as with strings u, v, w, x, and y, such that vx has at least one marked position, vwx has at most p marked positions, and for all .
Greibach normal formIn formal language theory, a context-free grammar is in Greibach normal form (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables. A non-strict form allows one exception to this format restriction for allowing the empty word (epsilon, ε) to be a member of the described language. The normal form was established by Sheila Greibach and it bears her name.