Concept

Quasi-satellite

Summary
A quasi-satellite is an object in a specific type of co-orbital configuration (1:1 orbital resonance) with a planet (or dwarf planet) where the object stays close to that planet over many orbital periods. A quasi-satellite's orbit around the Sun takes the same time as the planet's, but has a different eccentricity (usually greater), as shown in the diagram. When viewed from the perspective of the planet by an observer facing the Sun, the quasi-satellite will appear to travel in an oblong retrograde loop around the planet. . In contrast to true satellites, quasi-satellite orbits lie outside the planet's Hill sphere, and are unstable. Over time they tend to evolve to other types of resonant motion, where they no longer remain in the planet's neighborhood, then possibly later move back to a quasi-satellite orbit, etc. Other types of orbit in a 1:1 resonance with the planet include horseshoe orbits and tadpole orbits around the Lagrangian points, but objects in these orbits do not stay near the planet's longitude over many revolutions about the star. Objects in horseshoe orbits are known to sometimes periodically transfer to a relatively short-lived quasi-satellite orbit, and are sometimes confused with them. An example of such an object is . A quasi-satellite is similar to an object in a distant retrograde orbit, in a different context. The latter term is usually used for a space probe or artificial satellite in a retrograde orbit around a moon, and the period may be much shorter than that of the moon, whereas the term "quasi-satellite" usually refers to an object like an asteroid whose period is similar to that of the planet of which it is considered to be a quasi-satellite. But in both cases, the object (asteroid, space probe) viewed in a reference frame that rotates with the two main objects (once a year for Sun-Earth, once a month for Earth-Moon) appears to move retrograde compared to that rotation, thus lengthening its sidereal period. So a quasi-satellite (with low inclination) tends to stay in certain constellations rather than going through the whole zodiac.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.