Concept

Particulate pollution

Summary
Particulate pollution is pollution of an environment that consists of particles suspended in some medium. There are three primary forms: atmospheric particulate matter, marine debris, and space debris. Some particles are released directly from a specific source, while others form in chemical reactions in the atmosphere. Particulate pollution can be derived from either natural sources or anthropogenic processes. Atmospheric particulate matter, also known as particulate matter, or PM, describes solids and/or liquid particles suspended in a gas, most commonly the Earth's atmosphere. Particles in the atmosphere can be divided into two types, depending on the way they are emitted. Primary particles, such as mineral dust, are emitted into the atmosphere. Secondary particles, such as ammonium nitrate, are formed in the atmosphere through gas-to-particle conversion. Some particulates occur naturally, originating from volcanoes, dust storms, forest and grassland fires, living vegetation and sea spray. Human activities, such as the burning of fossil fuels in vehicles, wood burning, stubble burning, power plants, road dust, wet cooling towers in cooling systems and various industrial processes, also generate significant amounts of particulates. Coal combustion in developing countries is the primary method for heating homes and supplying energy. Because salt spray over the oceans is the overwhelmingly most common form of particulate in the atmosphere, anthropogenic aerosols—those made by human activities—currently account for about 10 percent of the total mass of aerosols in our atmosphere. Health effects of wood smoke Domestic combustion pollution is mainly composed of burning fuel including wood, gas, and charcoal in activities of heating, cooking, agriculture, and wildfires. Major domestic pollutants contain 17% of carbon dioxide, 13% of carbon monoxide, 6% of nitrogen monoxide, polycyclic aromatic hydrocarbons, and fine and ultrafine particles. In the United Kingdom domestic combustion is the largest single source of PM2.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.