Concept

Noncrossing partition

Summary
In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of (among other things) its application to the theory of free probability. The number of noncrossing partitions of a set of n elements is the nth Catalan number. The number of noncrossing partitions of an n-element set with k blocks is found in the Narayana number triangle. A partition of a set S is a set of non-empty, pairwise disjoint subsets of S, called "parts" or "blocks", whose union is all of S. Consider a finite set that is linearly ordered, or (equivalently, for purposes of this definition) arranged in a cyclic order like the vertices of a regular n-gon. No generality is lost by taking this set to be S = { 1, ..., n }. A noncrossing partition of S is a partition in which no two blocks "cross" each other, i.e., if a and b belong to one block and x and y to another, they are not arranged in the order a x b y. If one draws an arch based at a and b, and another arch based at x and y, then the two arches cross each other if the order is a x b y but not if it is a x y b or a b x y. In the latter two orders the partition { { a, b }, { x, y } } is noncrossing. Equivalently, if we label the vertices of a regular n-gon with the numbers 1 through n, the convex hulls of different blocks of the partition are disjoint from each other, i.e., they also do not "cross" each other. The set of all non-crossing partitions of S is denoted . There is an obvious order isomorphism between and for two finite sets with the same size. That is, depends essentially only on the size of and we denote by the non-crossing partitions on any set of size n. Like the set of all partitions of the set { 1, ..., n }, the set of all noncrossing partitions is a lattice when partially ordered by saying that a finer partition is "less than" a coarser partition. However, although it is a subset of the lattice of all partitions, it is not a sublattice of the lattice of all partitions, because the join operations do not agree.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.