Sediment traps are instruments used in oceanography and limnology to measure the quantity of sinking particulate organic (and inorganic) material in aquatic systems, usually oceans, lakes, or reservoirs. This flux of material is the product of biological and ecological processes typically within the surface euphotic zone, and is of interest to scientists studying the role of the biological pump in the carbon cycle. Sediments traps normally consist of an upward-facing funnel that directs sinking particulate matter (e.g. marine snow) towards a mechanism for collection and preservation. Typically, traps operate over an extended period of time (weeks to months) and their collection mechanisms may consist of a series of sampling vessels that are cycled through to allow the trap to record the changes in sinking flux with time (for instance, across a seasonal cycle). Preservation of collected material is necessary because of these long deployments, and prevents sample decomposition and its consumption by zooplankton "swimmers". Traps are often moored at a specific depth in the water column (usually below the euphotic zone or mixed layer) in a particular location, but some are so-called Lagrangian traps that drift with the surrounding ocean currents (though they may remain at a fixed depth). These latter traps travel with the biological systems that they study, while moored traps are subject to variability introduced by different systems (or states of systems) "passing by". However, because of their fixed location moored traps are straightforward to recover for analysis of their measurements. Lagrangian traps must surface at a pre-determined time, and report their position (usually via satellite) in order to be recovered.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (18)

Controlling factors of phytoplankton distribution in the river–lake transition zone of a large lake

David Andrew Barry, Frédéric Charles Soulignac, Matthieu Fallet

River–lake transition zones have been identified as major drivers of phytoplankton growth. With climate change reducing the frequency of complete lake overturns, it is expected that the Rhône River, the main tributary to Lake Geneva (France/Switzerland), w ...
2023

Climatic and Ecological Impact of Greenlandic Glacial Outwash Plains

Devis Tuia, Julia Schmale, Nora Bergner, Ianina Altshuler, Gaston Jean Lenczner, Grace Emma Marsh

Warming in the Arctic is occurring at an accelerated rate compared to the rest of the world which is partially driven by ecological and climatic feedback loops. Accelerated glacial and ice sheet retreat in Greenland drives increased development of glacial ...
2023

Data set of dissolved major and trace elements from the lacustrine systems of Clearwater Mesa, Antarctica

Tyler Joe Kohler

This article presents analytical observations on physicochemical parameters and major and trace element concentrations of water, ice, and sediment samples from the lake systems of Clearwater Mesa (CWM), northeast Antarctic Peninsula. Geo-chemical analyses ...
2020
Show more
Related concepts (5)
Marine snow
In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone.
Ocean
The ocean (also known as the sea or the world ocean) is a body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. The term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. Distinct names are used to identify five different areas of the ocean: Pacific (the largest), Atlantic, Indian, Southern, and Arctic (the smallest). Seawater covers approximately of the planet.
Biological pump
The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.