A Cornish engine is a type of steam engine developed in Cornwall, England, mainly for pumping water from a mine. It is a form of beam engine that uses steam at a higher pressure than the earlier engines designed by James Watt. The engines were also used for powering man engines to assist the underground miners' journeys to and from their working levels, for winching materials into and out of the mine, and for powering on-site ore stamping machinery.
Cornwall has long had tin, copper and other metal ore mines, but if mining is to take place at greater depths, a means to dewater the mine must be found. Lifting the weight of water up from the depths requires great amounts of work input. This energy may be weakly supplied by horse power or a waterwheel to operate pumps, but horses have limited power and waterwheels need a suitable stream of water. Accordingly, the innovation of coal-fired steam power to work pumps was more versatile and effective to the mining industry than primitive means.
The mine Wheal Vor had one of the earliest Newcomen engines (in-cylinder condensing engines, utilising sub-atmospheric pressure) before 1714, but Cornwall has no coalfield and coal imported from south Wales was expensive. The cost of fuel for pumping was thus a significant part of mining costs. Later, many of the more efficient early Watt engines (using an external condenser) were erected by Boulton and Watt in Cornwall. They charged the mine owners a royalty based on a share of the fuel saving. The fuel efficiency of an engine was measured by its "duty", expressed in the work (in foot-pounds) generated by a bushel () of coal. Early Watt engines had a duty of 20 million, and later ones over 30 million.
The Cornish cycle operates as follows.
Starting from a condition during operation with the piston at the top of the cylinder, the cylinder below the piston full of steam from the previous stroke, the boiler at normal working pressure, and the condenser at normal working vacuum,
The pressurized steam inlet valve and low-pressure steam exhaust valves are opened.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the alignment of enterprise needs with the possibilities offered by Information Technology (IT). Using a simulated business case, we explore how to define the require
Examines the transition from water-and-wood to coal-and-iron industrial technologies in the paleotechnic era, discussing environmental concerns, steam engines, and market systems.
In mechanical engineering, the cylinders of reciprocating engines are often classified by whether they are single- or double-acting, depending on how the working fluid acts on the piston. A single-acting cylinder in a reciprocating engine is a cylinder in which the working fluid acts on one side of the piston only. A single-acting cylinder relies on the load, springs, other cylinders, or the momentum of a flywheel, to push the piston back in the other direction. Single-acting cylinders are found in most kinds of reciprocating engine.
Stationary steam engines are fixed steam engines used for pumping or driving mills and factories, and for power generation. They are distinct from locomotive engines used on railways, traction engines for heavy steam haulage on roads, steam cars (and other motor vehicles), agricultural engines used for ploughing or threshing, marine engines, and the steam turbines used as the mechanism of power generation for most nuclear power plants.
Boulton & Watt was an early British engineering and manufacturing firm in the business of designing and making marine and stationary steam engines. Founded in the English West Midlands around Birmingham in 1775 as a partnership between the English manufacturer Matthew Boulton and the Scottish engineer James Watt, the firm had a major role in the Industrial Revolution and grew to be a major producer of steam engines in the 19th century. Watt steam engine The partnership was formed in 1775 to exploit Watt's patent for a steam engine with a separate condenser.
Continuous requirements for more efficient aircrafts lead to the design and analysis of novel propulsion configurations, with an example being the boundary layer ingestion. The complexity and integration challenges in such aircraft synergistic propulsion s ...
Professional Engineering Publishing2013
, ,
The large potential for waste resource and heat recovery in industry has been motivating research toward increasing efficiency. Process integration methods have proven to be effective tools in improving industrial sites while decreasing their resource and ...
2019
Offshore oil and natural gas production is an energy-intensive activity and is responsible for the emission of significant amounts of carbon dioxide into the atmosphere. The main emitting source is the simple-cycle gas turbines (SCGT) of the utility system ...