Concept

Habitability of yellow dwarf systems

Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars. Yellow dwarfs comprise the G-type stars of the main sequence, with masses between 0.9 and 1.1 M☉ and surface temperatures between 5000 and 6000 K, like the Sun. They are the third most common in the Milky Way Galaxy and the only ones in which the habitable zone coincides completely with the ultraviolet habitable zone. Since the habitable zone is farther away in more massive and luminous stars, the separation between the main star and the inner edge of this region is greater in yellow dwarfs than in red and orange dwarfs. Therefore, planets located in this zone of G-type stars are safe from the intense stellar emissions that occur after their formation and are not as affected by the gravitational influence of their star as those belonging to smaller stellar bodies. Thus, all planets in the habitable zone of such stars exceed the tidal locking limit and their rotation is therefore not synchronized with their orbit. The Earth, orbiting a yellow dwarf, represents the only known example of planetary habitability. For this reason, the main goal in the field of exoplanetology is to find an Earth analog planet that meets its main characteristics, such as size, average temperature and location around a star similar to the Sun. However, technological limitations make it difficult to find these objects due to the infrequency of their transits, a consequence of the distance that separates them from their stars or semi-major axis. Yellow dwarf stars correspond to the G-class stars of the main sequence, with a mass between 0.9 and 1.1 M☉, and surface temperatures between 5000 and 6000 K. Since the Sun itself is a yellow dwarf, of type G2V, these types of stars are also known as solar analogs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.