CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
ME-422: Multivariable controlThis course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple