Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Andrea RidolfiI am a professor of Signal Processing and Communication Technologies at Bern University of Applied Sciences.
Since 2004 I hold a lecturer position at EPFL, teaching “Mathematical Principles of Signal Processing” (Doctoral School, 2004 – 2011), “Statistical Signal and Data Processing through Applications” (Master Program, (2004 – ongoing), and Signal Processing and Machine Learning for Digital Humanities (Master, 2017 – 2019, co-taught with Mathieu Salzmann).
Previously, I have been working as Project Manager and R&D Engineer at EPFL (2011-2014), coordinating the LCAV activities within the NSF – Nanotera project Opensense, and as Project Manager and R&D Engineer with the biomedical signal processing group at CSEM (2006-2011).
Michel BierlaireBorn in 1967, Michel Bierlaire holds a PhD in Mathematical Sciences from the Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium (University of Namur). Between 1995 and 1998, he was research associate and project manager at the Intelligent Transportation Systems Program of the Massachusetts Institute of Technology (Cambridge, Ma, USA). Between 1998 and 2006, he was a junior faculty in the Operations Research group ROSO within the Institute of Mathematics at EPFL. In 2006, he was appointed associate professor in the School of Architecture, Civil and Environmental Engineering at EPFL, where he became the director of the Transport and Mobility laboratory. Since 2009, he is the director of TraCE, the Transportation Center. From 2009 to 2017, he was the director of Doctoral Program in Civil and Environmental Engineering at EPFL. In 2012, he was appointed full professor at EPFL. Since September 2017, he is the head of the Civil Engineering Institute at EPFL. His main expertise is in the design, development and applications of models and algorithms for the design, analysis and management of transportation systems. Namely, he has been active in demand modeling (discrete choice models, estimation of origin-destination matrices), operations research (scheduling, assignment, etc.) and Dynamic Traffic Management Systems. As of August 2021, he has published 136 papers in international journals, 4 books, 41 book chapters, 193 articles in conference proceedings, 182 technical reports, and has given 195 scientific seminars. His Google Scholar h-index is 68. He is the founder, organizer and lecturer of the EPFL Advanced Continuing Education Course "Discrete Choice Analysis: Predicting Demand and Market Shares". He is the founder of hEART: the European Association for Research in Transportation. He was the founding Editor-in-Chief of the EURO Journal on Transportation and Logistics, from 2011 to 2019. He is an Associate Editor of Operations Research. He is the editor of two special issues for the journal Transportation Research Part C. He has been member of the Editorial Advisory Board (EAB) of Transportation Research Part B since 1995, of Transportation Research Part C since January 1, 2006.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.
André-Gilles DumontAndré-Gilles Dumont est né en 1951 à la Brévine (NE). Il obtient en 1976 le diplôme d'ingénieur civil de l'EPFL.
Jusqu'en 1979, il est collaborateur d'un bureau d'ingénieurs et dirige la construction de divers bâtiments. Il entre ensuite au Laboratoire des voies de circulation (LAVOC) où il va développer une méthodologie d'essais en vraie grandeur des superstructures routières. Cette activité sera poursuivie au niveau international au sein de deux groupes d'experts scientifiques de l'OCDE.
Parallèlement au développement du LAVOC et à l'exécution de nombreux mandats pour des tiers, il est l'auteur de plusieurs recherches dans le domaine des matériaux granulaires et des bitumineux modifiés par des polymères.
En Suisse, il assume dès 1985 la présidence de la commission Technologie des matériaux de l'Union des professionnels suisses de la route puis, dès 1990, celle de la commission de coordination Exécution et entretien.
Depuis 1991, il est professeur et dirige le LAVOC. Il enseigne aux étudiants du génie civil et du génie rural, d'une part le tracé des voies de circulation et, d'autre part la construction et l'entretien des superstructures routières. Il mène également des recherches dans le domaine des propriétés des matériaux hydrocarbonés et de la modélisation des chaussées, comme dans celui de l'utilisation de la CAO pour l'élaboration des projets routiers et la prise en compte des facteurs environnementaux.
Volkan CevherVolkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory, optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Pierre VandergheynstPierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007), where he is now a Full Professor of Electrical Engineering and, by courtesy, of Computer and Communication Sciences. As of 2015, Prof. Vandergheynst serves as EPFL’s Vice-Provost for Education. His research focuses on harmonic analysis, sparse approximations and mathematical data processing in general with applications covering signal, image and high dimensional data processing, computer vision, machine learning, data science and graph-based data processing. He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate Editor of the IEEE Transactions on Signal Processing (2007-2011), the flagship journal of the signal processing community and currently serves as Associate Editor of Computer Vision and Image Understanding and SIAM Imaging Sciences. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop and was co-General Chairman of the EUSIPCO 2008 conference. Pierre Vandergheynst is the author or co-author of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards. Professor Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium.
Ali H. SayedAli H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory. He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019.
Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas
including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems.
His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.