Resolvent setIn linear algebra and operator theory, the resolvent set of a linear operator is a set of complex numbers for which the operator is in some sense "well-behaved". The resolvent set plays an important role in the resolvent formalism. Let X be a Banach space and let be a linear operator with domain . Let id denote the identity operator on X. For any , let A complex number is said to be a regular value if the following three statements are true: is injective, that is, the corestriction of to its image has an inverse ; is a bounded linear operator; is defined on a dense subspace of X, that is, has dense range.
Schur decompositionIn the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily equivalent to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix. The Schur decomposition reads as follows: if A is an n × n square matrix with complex entries, then A can be expressed as where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A.
Spectral theory of ordinary differential equationsIn mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite.
Hardy spaceIn complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis.
Unitary operatorIn functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating on a Hilbert space, but the same notion serves to define the concept of isomorphism between Hilbert spaces. A unitary element is a generalization of a unitary operator. In a unital algebra, an element U of the algebra is called a unitary element if UU = UU = I, where I is the identity element. Definition 1.