Concept

Silicon–oxygen bond

A silicon–oxygen bond ( bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. In a silicon–oxygen bond, electrons are shared unequally between the two atoms, with oxygen taking the larger share due to its greater electronegativity. This polarisation means Si–O bonds show characteristics of both covalent and ionic bonds. Compounds containing silicon–oxygen bonds include materials of major geological and industrial significance such as silica, silicate minerals and silicone polymers like polydimethylsiloxane. On the Pauling electronegativity scale, silicon has an electronegativity of 1.90 and oxygen 3.44. The electronegativity difference between the elements is therefore 1.54. Because of this moderately large difference in electronegativities, the bond is polar but not fully ionic. Carbon has an electronegativity of 2.55 so carbon–oxygen bonds have an electronegativity difference of 0.89 and are less polar than silicon–oxygen bonds. Silicon–oxygen bonds are therefore covalent and polar, with a partial positive charge on silicon and a partial negative charge on oxygen: Siδ+—Oδ−. Silicon–oxygen single bonds are longer (1.6 vs 1.4 Å) but stronger (452 vs. about 360 kJ mol−1) than carbon–oxygen single bonds. However, silicon–oxygen double bonds are weaker than carbon–oxygen double bonds (590 vs. 715 kJ mol−1) due to a better overlap of p orbitals forming a stronger pi bond in the latter. This is an example of the double bond rule. For these reasons, carbon dioxide is a molecular gas containing two C=O double bonds per carbon atom whereas silicon dioxide is a polymeric solid containing four Si–O single bonds per silicon atom; molecular SiO2 containing two Si=O double bonds would polymerise. Other compounds containing Si=O double bonds are normally very reactive and unstable with respect to polymerisation or oligomerization. Silanones oligomerise to siloxanes unless they are stabilised, for example by coordination to a metal centre, coordination to Lewis acids or bases, or by steric shielding.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Wet Etching: Glass and SiliconMOOC: Micro and Nanofabrication (MEMS)
Explores the wet etching process of glass and silicon using HF-based solutions and cleanroom processes for HF and BHF etchants.
Chemistry of Elements: Silicon and Carbon
Explores the chemistry of silicon and carbon compounds, including conductivity differences, compound existence, carbon nanotubes history, and environmental impact of carbon dioxide.
Semiconductor Physics: Donors and Acceptors
Covers the role of donors and acceptors in semiconductor physics and the control of conductivities.
Show more
Related publications (41)
Related concepts (2)
Silicone
A silicone or polysiloxane is a polymer made up of siloxane (−R2Si−O−SiR2−, where R = organic group). They are typically colorless oils or rubber-like substances. Silicones are used in sealants, adhesives, lubricants, medicine, cooking utensils, thermal insulation, and electrical insulation. Some common forms include silicone oil, silicone grease, silicone rubber, silicone resin, and silicone caulk.
Silicate mineral
Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually considered a silicate mineral. Silica is found in nature as the mineral quartz, and its polymorphs. On Earth, a wide variety of silicate minerals occur in an even wider range of combinations as a result of the processes that have been forming and re-working the crust for billions of years.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.