Summary
Self-organized criticality (SOC) is a property of dynamical systems that have a critical point as an attractor. Their macroscopic behavior thus displays the spatial or temporal scale-invariance characteristic of the critical point of a phase transition, but without the need to tune control parameters to a precise value, because the system, effectively, tunes itself as it evolves towards criticality. The concept was put forward by Per Bak, Chao Tang and Kurt Wiesenfeld ("BTW") in a paper published in 1987 in Physical Review Letters, and is considered to be one of the mechanisms by which complexity arises in nature. Its concepts have been applied across fields as diverse as geophysics, physical cosmology, evolutionary biology and ecology, bio-inspired computing and optimization (mathematics), economics, quantum gravity, sociology, solar physics, plasma physics, neurobiology and others. SOC is typically observed in slowly driven non-equilibrium systems with many degrees of freedom and strongly nonlinear dynamics. Many individual examples have been identified since BTW's original paper, but to date there is no known set of general characteristics that guarantee a system will display SOC. Self-organized criticality is one of a number of important discoveries made in statistical physics and related fields over the latter half of the 20th century, discoveries which relate particularly to the study of complexity in nature. For example, the study of cellular automata, from the early discoveries of Stanislaw Ulam and John von Neumann through to John Conway's Game of Life and the extensive work of Stephen Wolfram, made it clear that complexity could be generated as an emergent feature of extended systems with simple local interactions. Over a similar period of time, Benoît Mandelbrot's large body of work on fractals showed that much complexity in nature could be described by certain ubiquitous mathematical laws, while the extensive study of phase transitions carried out in the 1960s and 1970s showed how scale invariant phenomena such as fractals and power laws emerged at the critical point between phases.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.