Concept

Bundle map

In mathematics, a bundle map (or bundle morphism) is a morphism in the of fiber bundles. There are two distinct, but closely related, notions of bundle map, depending on whether the fiber bundles in question have a common base space. There are also several variations on the basic theme, depending on precisely which category of fiber bundles is under consideration. In the first three sections, we will consider general fiber bundles in the . Then in the fourth section, some other examples will be given. Let and be fiber bundles over a space M. Then a bundle map from E to F over M is a continuous map such that . That is, the diagram should commute. Equivalently, for any point x in M, maps the fiber of E over x to the fiber of F over x. Let πE:E→ M and πF:F→ N be fiber bundles over spaces M and N respectively. Then a continuous map is called a bundle map from E to F if there is a continuous map f:M→ N such that the diagram commutes, that is, . In other words, is fiber-preserving, and f is the induced map on the space of fibers of E: since πE is surjective, f is uniquely determined by . For a given f, such a bundle map is said to be a bundle map covering f. It follows immediately from the definitions that a bundle map over M (in the first sense) is the same thing as a bundle map covering the identity map of M. Conversely, general bundle maps can be reduced to bundle maps over a fixed base space using the notion of a pullback bundle. If πF:F→ N is a fiber bundle over N and f:M→ N is a continuous map, then the pullback of F by f is a fiber bundle fF over M whose fiber over x is given by (fF)x = Ff(x). It then follows that a bundle map from E to F covering f is the same thing as a bundle map from E to f*F over M. There are two kinds of variation of the general notion of a bundle map. First, one can consider fiber bundles in a different category of spaces. This leads, for example, to the notion of a smooth bundle map between smooth fiber bundles over a smooth manifold.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.