In chemical physics and physical chemistry, chemical affinity is the electronic property by which dissimilar chemical species are capable of forming chemical compounds. Chemical affinity can also refer to the tendency of an atom or compound to combine by chemical reaction with atoms or compounds of unlike composition. The idea of affinity is extremely old. Many attempts have been made at identifying its origins. The majority of such attempts, however, except in a general manner, end in futility since "affinities" lie at the basis of all magic, thereby pre-dating science. Physical chemistry, however, was one of the first branches of science to study and formulate a "theory of affinity". The name affinitas was first used in the sense of chemical relation by German philosopher Albertus Magnus near the year 1250. Later, those as Robert Boyle, John Mayow, Johann Glauber, Isaac Newton, and Georg Stahl put forward ideas on elective affinity in attempts to explain how heat is evolved during combustion reactions. The term affinity has been used figuratively since c. 1600 in discussions of structural relationships in chemistry, philology, etc., and reference to "natural attraction" is from 1616. "Chemical affinity", historically, has referred to the "force" that causes chemical reactions. as well as, more generally, and earlier, the ′′tendency to combine′′ of any pair of substances. The broad definition, used generally throughout history, is that chemical affinity is that whereby substances enter into or resist decomposition. The modern term chemical affinity is a somewhat modified variation of its eighteenth-century precursor "elective affinity" or elective attractions, a term that was used by the 18th century chemistry lecturer William Cullen. Whether Cullen coined the phrase is not clear, but his usage seems to predate most others, although it rapidly became widespread across Europe, and was used in particular by the Swedish chemist Torbern Olof Bergman throughout his book De attractionibus electivis (1775).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CH-431: Physical and computational organic chemistry
This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
MSE-649: Crystal growth by epitaxy
This is an interactive course explaining the main physical and chemical concepts to understand epitaxy of crystalline thin films and what determines the morphology, composition and structure of a mate
Show more
Related publications (32)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.