Icosahedral bipyramidIn 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, {3,5} + { }. Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 vertices. An icosahedral bipyramid can be seen as two icosahedral pyramids augmented together at their bases. It is the dual of a dodecahedral prism, Coxeter-Dynkin diagram , so the bipyramid can be described as . Both have Coxeter notation symmetry [2,3,5], order 240.
Dodecahedral bipyramidIn 4-dimensional geometry, the dodecahedral bipyramid is the direct sum of a dodecahedron and a segment, {5,3} + { }. Each face of a central dodecahedron is attached with two pentagonal pyramids, creating 24 pentagonal pyramidal cells, 72 isosceles triangular faces, 70 edges, and 22 vertices. A dodecahedral bipyramid can be seen as two dodecahedral pyramids augmented together at their base. It is the dual of a icosahedral prism.
Cubical bipyramidIn 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, {4,3} + { }. Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base. It is the dual of a octahedral prism. Being convex and regular-faced, it is a CRF polytope. It is a Hanner polytope with coordinates: [2] (0, 0, 0; ±1) [8] (±1, ±1, ±1;
BipyramidA (symmetric) n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its base-to-base. An n-gonal bipyramid has 2n triangle faces, 3n edges, and 2 + n vertices. The "n-gonal" in the name of a bipyramid does not refer to a face but to the internal polygon base, lying in the mirror plane that connects the two pyramid halves. (If it were a face, then each of its edges would connect three faces instead of two.) A "regular" bipyramid has a regular polygon base.