Diltiazem, sold under the brand name Cardizem among others, is a calcium channel blocker medication used to treat high blood pressure, angina, and certain heart arrhythmias. It may also be used in hyperthyroidism if beta blockers cannot be used. It is taken by mouth or injection into a vein. When given by injection, effects typically begin within a few minutes and last a few hours.
Common side effects include swelling, dizziness, headaches, and low blood pressure. Other severe side effects include an overly slow heart beat, heart failure, liver problems, and allergic reactions. Use is not recommended during pregnancy. It is unclear if use when breastfeeding is safe.
Diltiazem works by relaxing the smooth muscle in the walls of arteries, resulting in them opening and allowing blood to flow more easily. Additionally, it acts on the heart to prolong the period until it can beat again. It does this by blocking the entry of calcium into the cells of the heart and blood vessels. It is a class IV antiarrhythmic.
Diltiazem was approved for medical use in the United States in 1982. It is available as a generic medication. In 2020, it was the 76th most commonly prescribed medication in the United States, with more than 9 million prescriptions. An extended release formulation is also available.
Diltiazem is indicated for:
Stable angina (exercise-induced) – diltiazem increases coronary blood flow and decreases myocardial oxygen consumption, secondary to decreased peripheral resistance, heart rate, and contractility.
Variant angina – it is effective owing to its direct effects on coronary dilation.
Unstable angina (preinfarction, crescendo) – diltiazem may be particularly effective if the underlying mechanism is vasospasm.
Myocardial bridge
For supraventricular tachycardias (PSVT), diltiazem appears to be as effective as verapamil in treating re-entrant supraventricular tachycardia.
Atrial fibrillation or atrial flutter is another indication. The initial bolus should be 0.25 mg/kg, intravenous (IV).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the technologies and methodologies used in the context of the operation of future power grids and be able to deploy/implement/test them.
Atrial fibrillation (AF or A-fib) is an abnormal heart rhythm (arrhythmia) characterized by rapid and irregular beating of the atrial chambers of the heart. It often begins as short periods of abnormal beating, which become longer or continuous over time. It may also start as other forms of arrhythmia such as atrial flutter that then transform into AF. Episodes can be asymptomatic. Symptomatic episodes may involve heart palpitations, fainting, lightheadedness, shortness of breath, or chest pain.
Supraventricular tachycardia (SVT) is an umbrella term for fast heart rhythms arising from the upper part of the heart. This is in contrast to the other group of fast heart rhythms – ventricular tachycardia, which start within the lower chambers of the heart. There are four main types of SVT: atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia (PSVT), and Wolff–Parkinson–White syndrome. The symptoms of SVT include palpitations, feeling of faintness, sweating, shortness of breath, and/or chest pain.
Cytochrome P450 2D6 (CYP2D6) is an enzyme that in humans is encoded by the CYP2D6 gene. CYP2D6 is primarily expressed in the liver. It is also highly expressed in areas of the central nervous system, including the substantia nigra. CYP2D6, a member of the cytochrome P450 mixed-function oxidase system, is one of the most important enzymes involved in the metabolism of xenobiotics in the body.
Vagus nerve stimulation (VNS) is an FDA-approved technique for the neuromodulation of the autonomic nervous system. There are many therapeutic applications where VNS could be used as a therapy, such as cardiovascular diseases, epilepsy, depression, and inf ...
In the context of cardiac electrophysiology, we propose a novel computational approach to highlight and explain the long-debated mechanisms behind atrial fibrillation (AF) and to reliably numerically predict its induction and sustainment. A key role is pla ...
In modern electric power networks with fast evolving operational conditions, assessing the impact of contingencies is becoming more and more crucial. Contingencies of interest can be roughly classified into nodal power disturbances and line faults. Despite ...