Summary
Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines- Internal combustion (gasoline, diesel and gas turbine-Brayton cycle engines) and External combustion engines (steam piston, steam turbine, and the Stirling cycle engine). Each of these engines has thermal efficiency characteristics that are unique to it. Engine efficiency, transmission design, and tire design all contribute to a vehicle's fuel efficiency. Thermal efficiency and Carnot cycle The efficiency of an engine is defined as ratio of the useful work done to the heat provided. where, is the heat absorbed and is the work done. Please note that the term work done relates to the power delivered at the clutch or at the driveshaft. This means the friction and other losses are subtracted from the work done by thermodynamic expansion. Thus an engine not delivering any work to the outside environment has zero efficiency. The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase. Hence, increasing the starting pressure is an effective way to increase the work extracted (decreasing the ending pressure, as is done with steam turbines by exhausting into a vacuum, is likewise effective). The compression ratio (calculated purely from the geometry of the mechanical parts) of a typical gasoline (petrol) is 10:1 (premium fuel) or 9:1 (regular fuel), with some engines reaching a ratio of 12:1 or more. The greater the expansion ratio, the more efficient the engine, in principle, and higher compression / expansion -ratio conventional engines in principle need gasoline with higher octane value, though this simplistic analysis is complicated by the difference between actual and geometric compression ratios.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.