Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The data compiled through many Wordnet projects can be a rich source of seed information for a multilingual dictionary. However, the original Princeton WordNet was not intended as a dictionary per se, and spawning other languages from it introduces inheren ...
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the de ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over ...
Lexicography has long faced the challenge of having too few specialists to document too many words in too many languages with too many linguistic features. Great dictionaries are invariably the product of many person-years of labor, whether the lifetime wo ...
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits t ...
Statistical speech recognition has been cast as a natural realization of the compressive sensing and sparse recovery. The compressed acoustic observations are sub-word posterior probabilities obtained from a deep neural network (DNN). Dictionary learning a ...
The data compiled through many Wordnet projects can be a rich source of seed information for a multilingual dictionary. However, the original Princeton WordNet was not intended as a dictionary per se, and spawning other languages from it introduces inheren ...
We cast the problem of query by example spoken term detection (QbE-STD) as subspace detection where query and background are modeled as a union of low-dimensional subspaces. The speech exemplars used for subspace modeling consist of class-conditional poste ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of lowdimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representa ...
We study the problem of learning constitutive features for the effective representation of graph signals, which can be considered as observations collected on different graph topologies. We propose to learn graph atoms and build graph dictionaries that pro ...