In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier.
Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behavior in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture's memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constraints.
Memory barriers are typically used when implementing low-level machine code that operates on memory shared by multiple devices. Such code includes synchronization primitives and lock-free data structures on multiprocessor systems, and device drivers that communicate with computer hardware.
When a program runs on a single-CPU machine, the hardware performs the necessary bookkeeping to ensure that the program executes as if all memory operations were performed in the order specified by the programmer (program order), so memory barriers are not necessary. However, when the memory is shared with multiple devices, such as other CPUs in a multiprocessor system, or memory-mapped peripherals, out-of-order access may affect program behavior. For example, a second CPU may see memory changes made by the first CPU in a sequence that differs from program order.
A program is run via a process which can be multi-threaded (i.e. a software thread such as pthreads as opposed to a hardware thread).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
In computer science, synchronization refers to one of two distinct but related concepts: synchronization of processes, and synchronization of data. Process synchronization refers to the idea that multiple processes are to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action. Data synchronization refers to the idea of keeping multiple copies of a dataset in coherence with one another, or to maintain data integrity.
The Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally written in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU operating system, which was written to be a free (libre) replacement for Unix. Linux is provided under the GNU General Public License version 2 only, but it contains files under other compatible licenses.
In computer science and software engineering, busy-waiting, busy-looping or spinning is a technique in which a process repeatedly checks to see if a condition is true, such as whether keyboard input or a lock is available. Spinning can also be used to generate an arbitrary time delay, a technique that was necessary on systems that lacked a method of waiting a specific length of time. Processor speeds vary greatly from computer to computer, especially as some processors are designed to dynamically adjust speed based on current workload.
Explores the design of synchronization primitives and concurrent data structures using atomic instructions.
Covers multiprocessor architecture, sustainable computing, AI model training impact, and parallel programming fundamentals.
Explores memory consistency, weak consistency, and language-level guarantees in memory ordering, emphasizing the importance of data race free programming.
The upgrade of the MALTA DMAPS designed in Tower 180 nm CMOS Imaging process will implement the numerous modifications, as well as front-end changes in order to boost the charge collection efficiency after the targeted fluence of 1x10(15) 1 MeVn(eq)/cm(2). ...
ELSEVIER2022
, ,
RePlAce is a state-of-the-art prototype of a flat, analytic, and nonlinear global cell placement algorithm, which models a placement instance as an electrostatic system with positively charged objects. It can handle large-scale standard-cell and mixed-cell ...
IEEE2020
, ,
String sorting is a fundamental kernel of string matching and database index construction; yet, it has not been studied as extensively as fixed-length keys sorting. Because processing variable-length keys in hardware is challenging, it is no surprise that ...