Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Thymic epithelial cells (TECs) are organised in a unique 3D network that is critical for the development of efficient and self-tolerant T-cells. We report for the first time that the human thymus of all ages, even old and involuted, contains a significant ...
The last two decades have seen the development of organoid models for many different tissues and organs. Organoids are three-dimensional organ-mimetics derived from stem or progenitor cells comprising various specialized cell types, resembling the architec ...
Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. Duri ...
The thymus is the primary organ for T cell differentiation and maturation. Its stroma forms a characteristic sponge-like 3D structure mainly composed of thymic epithelial cells. Despite of this unconventional epithelial architecture, TECs express markers a ...
The thymus is a primary lymphoid organ where bone marrow derived T-cell progenitors come in contact with a unique microenvironment able to sustain their maturation into functional T-cells. This fundamental immunological function of the thymus is supported ...
The forkhead transcription factor Foxn1 is indispensable for thymus development, but the mechanisms by which it mediates thymic epithelial cell (TEC) development are poorly understood. To examine the cellular and molecular basis of Foxn1 function, we gener ...
The thymus is the second fundamental organ of the immune system after the bone marrow; it is the essential for T cell maturation and repertoire selection. The function of the thymus critically depends on the thymic epithelium, which is structured in two di ...
Most papers related to thymus focus on the cortical and medullary epithelial cells whereas the subcapsular layer is ignored. In this thesis, we are providing new informations about the subcapsular thymic epithelial cells (TECs) by comparing them to cortica ...
T-cell development depends upon interactions between thymocytes and thymic epithelial cells (TECs). The engagement of delta-like 4 (DL4) on TECs by Notch1 expressed by blood-borne BM-derived precursors is essential for T-cell commitment in the adult thymus ...
The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-toleranc ...