Soar is a cognitive architecture, originally created by John Laird, Allen Newell, and Paul Rosenbloom at Carnegie Mellon University. (Rosenbloom continued to serve as co-principal investigator after moving to Stanford University, then to the University of Southern California's Information Sciences Institute.) It is now maintained and developed by John Laird's research group at the University of Michigan. The goal of the Soar project is to develop the fixed computational building blocks necessary for general intelligent agents – agents that can perform a wide range of tasks and encode, use, and learn all types of knowledge to realize the full range of cognitive capabilities found in humans, such as decision making, problem solving, planning, and natural-language understanding. It is both a theory of what cognition is and a computational implementation of that theory. Since its beginnings in 1983 as John Laird’s thesis, it has been widely used by AI researchers to create intelligent agents and cognitive models of different aspects of human behavior. The most current and comprehensive description of Soar is the 2012 book, The Soar Cognitive Architecture. Soar embodies multiple hypotheses about the computational structures underlying general intelligence, many of which are shared with other cognitive architectures, including ACT-R, which was created by John R. Anderson, and LIDA, which was created by Stan Franklin. Recently, the emphasis on Soar has been on general AI (functionality and efficiency), whereas the emphasis on ACT-R has always been on cognitive modeling (detailed modeling of human cognition). The original theory of cognition underlying Soar is the Problem Space Hypothesis, which is described in Allen Newell's book, Unified Theories of Cognition. and dates back to one of the first AI systems created, Newell, Simon, and Shaw's Logic Theorist, first presented in 1955. The Problem Space Hypothesis contends that all goal-oriented behavior can be cast as search through a space of possible states (a problem space) while attempting to achieve a goal.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (3)
Cognitive architecture
A cognitive architecture refers to both a theory about the structure of the human mind and to a computational instantiation of such a theory used in the fields of artificial intelligence (AI) and computational cognitive science. The formalized models can be used to further refine a comprehensive theory of cognition and as a useful artificial intelligence program. Successful cognitive architectures include ACT-R (Adaptive Control of Thought - Rational) and SOAR.
Action selection
Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit complex behaviour in an agent environment. The term is also sometimes used in ethology or animal behavior. One problem for understanding action selection is determining the level of abstraction used for specifying an "act".
Cognitive science
Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition (in a broad sense). Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.