Concept

Fine-tuning (deep learning)

In deep learning, fine-tuning is an approach to transfer learning in which the weights of a pre-trained model are trained on new data. Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (not updated during the backpropagation step). A model may also be augmented with "adapters" that consist of far fewer parameters than the original model, and fine-tuned in a parameter-efficient way by tuning the weights of the adapters and leaving the rest of the model's weights frozen. For some architectures, such as convolutional neural networks, it is common to keep the earlier layers (those closest to the input layer) frozen because they capture lower-level features, while later layers often discern high-level features that can be more related to the task that the model is trained on. Models that are pre-trained on large and general corpora are usually fine-tuned by reusing the model's parameters as a starting point and adding a task-specific layer trained from scratch. Fine-tuning the full model is common as well and often yields better results, but it is more computationally expensive. Fine-tuning is typically accomplished with supervised learning, but there are also techniques to fine-tune a model using weak supervision. Fine-tuning can be combined with a reinforcement learning from human feedback-based objective to produce language models like ChatGPT (a fine-tuned version of GPT-3) and Sparrow. Fine-tuning can degrade a model's robustness to distribution shifts. One mitigation is to linearly interpolate a fine-tuned model's weights with the weights of the original model, which can greatly increase out-of-distribution performance while largely retaining the in-distribution performance of the fine-tuned model. Low-rank adaption (LoRA) is an adapter-based technique for efficiently finetuning models. The basic idea is to design a low-rank matrix that is then added to the original matrix.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)
Related concepts (4)
Large language model
A large language model (LLM) is a language model characterized by its large size. Their size is enabled by AI accelerators, which are able to process vast amounts of text data, mostly scraped from the Internet. The artificial neural networks which are built can contain from tens of millions and up to billions of weights and are (pre-)trained using self-supervised learning and semi-supervised learning. Transformer architecture contributed to faster training.
Generative pre-trained transformer
Generative pre-trained transformers (GPT) are a type of large language model (LLM) and a prominent framework for generative artificial intelligence. The first GPT was introduced in 2018 by OpenAI. GPT models are artificial neural networks that are based on the transformer architecture, pre-trained on large data sets of unlabelled text, and able to generate novel human-like content. As of 2023, most LLMs have these characteristics and are sometimes referred to broadly as GPTs.
ChatGPT
ChatGPT, which stands for Chat Generative Pre-trained Transformer, is a large language model-based chatbot developed by OpenAI and launched on November 30, 2022, notable for enabling users to refine and steer a conversation towards a desired length, format, style, level of detail, and language used. Successive prompts and replies, known as prompt engineering, are considered at each conversation stage as a context. ChatGPT is built upon GPT-3.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.