Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific landscapes or biome regions. In the context of coupled socio-ecological social systems, adaptive capacity is commonly associated with the following characteristics: Firstly, the ability of institutions and networks to learn, and store knowledge and experience. Secondly, the creative flexibility in decision making, transitioning and problem solving. And thirdly, the existence of power structures that are responsive and consider the needs of all stakeholders. In the context of climate change adaptation, adaptive capacity depends on the inter-relationship of social, political, economic, technological and institutional factors operating at a variety of scales. Some of these are generic, and others are exposure-specific. Adaptive capacity confers resilience to perturbation, giving ecological and human social systems the ability to reconfigure themselves with minimum loss of function. In ecological systems, this resilience shows as net primary productivity and maintenance of biomass and biodiversity, and the stability of hydrological cycles. In human social systems it is demonstrated by the stability of social relations, the maintenance of social capital and economic prosperity. Building adaptive capacity is particular important in the context of climate change, where it refers to a latent capacity - in terms of resources and assets - from which adaptations can be made as required depending on future circumstances. Since future climate is likely to be different from the present climate, developing adaptive capacity is a prerequisite for the adaptation that can reduce the potential negative effects of exposure to climate change.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (6)
Related publications (32)

CHARACTERIZING THE RESILIENCE AND ADAPTATION OF BIOFILM COMMUNITIES TO CLIMATE CHANGE IN GLACIER-FED STREAMS

Tom Ian Battin, Hannes Markus Peter, Grégoire Marie Octave Edouard Michoud, Nicola Deluigi, David Touchette, Martina Gonzalez Mateu, Florian Baier

Biofilms conform the dominant microbial lifestyle in alpine streams where they are major contributors to carbon and nutrient cycling. However, relatively little is known about their adaptive capacity to climate change as water temperature rises and hydrolo ...
2023

(In)visible reuse: Retrofit and refurbishment practices in the home

Ankita Singhvi

The construction sector is the world's largest consumer of raw materials, and emissions from housing and construction contribute to approximately 40% of all annual global carbon dioxide emissions. With cities racing to meet their climate targets, there is ...
2023

A ‘common garden’ to understand and predict effects of glacier shrinkage of microbial life in high-mountain streams

Tom Ian Battin, Hannes Markus Peter, Susheel Bhanu Busi, Grégoire Marie Octave Edouard Michoud, Leïla Ezzat, Tyler Joe Kohler, Jade Brandani, Stylianos Fodelianakis, Paraskevi Pramateftaki

In alpine regions worldwide, climate change has induced unprecedented glacier shrinkage, and various stream ecosystems draining glacierized catchments are experiencing profound environmental changes. However, how microbial life in these streams will be aff ...
2022
Show more
Related people (2)
Related concepts (2)
Sustainability
Sustainability is a social goal for people to co-exist on Earth over a long time. Specific definitions of this term are disputed and have varied with literature, context, and time. Experts often describe sustainability as having three dimensions (or pillars): environmental, economic, and social, and many publications emphasize the environmental dimension. In everyday use, sustainability often focuses on countering major environmental problems, including climate change, loss of biodiversity, loss of ecosystem services, land degradation, and air and water pollution.
Ecosystem-based adaptation
Ecosystem-based adaptation (EBA) encompasses a broad set of approaches to adapt to climate change. They all involve the management of ecosystems and their services to reduce the vulnerability of human communities to the impacts of climate change. The Convention on Biological Diversity defines EBA as "the use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change".

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.