Concept

Cosmic censorship hypothesis

Summary
The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity. Singularities that arise in the solutions of Einstein's equations are typically hidden within event horizons, and therefore cannot be observed from the rest of spacetime. Singularities that are not so hidden are called naked. The weak cosmic censorship hypothesis was conceived by Roger Penrose in 1969 and posits that no naked singularities exist in the universe. Since the physical behavior of singularities is unknown, if singularities can be observed from the rest of spacetime, causality may break down, and physics may lose its predictive power. The issue cannot be avoided, since according to the Penrose–Hawking singularity theorems, singularities are inevitable in physically reasonable situations. Still, in the absence of naked singularities, the universe, as described by the general theory of relativity, is deterministic: it is possible to predict the entire evolution of the universe (possibly excluding some finite regions of space hidden inside event horizons of singularities), knowing only its condition at a certain moment of time (more precisely, everywhere on a spacelike three-dimensional hypersurface, called the Cauchy surface). Failure of the cosmic censorship hypothesis leads to the failure of determinism, because it is yet impossible to predict the behavior of spacetime in the causal future of a singularity. Cosmic censorship is not merely a problem of formal interest; some form of it is assumed whenever black hole event horizons are mentioned. The hypothesis was first formulated by Roger Penrose in 1969, and it is not stated in a completely formal way. In a sense it is more of a research program proposal: part of the research is to find a proper formal statement that is physically reasonable, falsifiable, and sufficiently general to be interesting. Because the statement is not a strictly formal one, there is sufficient latitude for (at least) two independent formulations: a weak form, and a strong form.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.