Concept

Disk algebra

In mathematics, specifically in functional and complex analysis, the disk algebra A(D) (also spelled disc algebra) is the set of holomorphic functions ƒ : D → , (where D is the open unit disk in the complex plane ) that extend to a continuous function on the closure of D. That is, where H∞(D) denotes the Banach space of bounded analytic functions on the unit disc D (i.e. a Hardy space). When endowed with the pointwise addition (ƒ + g)(z) = ƒ(z) + g(z), and pointwise multiplication (ƒg)(z) = ƒ(z)g(z), this set becomes an algebra over C, since if ƒ and g belong to the disk algebra then so do ƒ + g and ƒg. Given the uniform norm, by construction it becomes a uniform algebra and a commutative Banach algebra. By construction the disc algebra is a closed subalgebra of the Hardy space H∞. In contrast to the stronger requirement that a continuous extension to the circle exists, it is a lemma of Fatou that a general element of H∞ can be radially extended to the circle almost everywhere.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.