Adjoint functorsIn mathematics, specifically , adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e.
Initial and terminal objectsIn , a branch of mathematics, an initial object of a C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The notion is that of a terminal object (also called terminal element): T is terminal if for every object X in C there exists exactly one morphism X → T. Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object.
CoproductIn , the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic to the , which means the definition is the same as the product but with all arrows reversed.
Product (category theory)In , the product of two (or more) in a is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.
Functor categoryIn , a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors (here, is another object in the category). Functor categories are of interest for two main reasons: many commonly occurring categories are (disguised) functor categories, so any statement proved for general functor categories is widely applicable; every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer properties than the original category, allowing certain operations that were not available in the original setting.
Inverse limitIn mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any although their existence depends on the category that is considered. They are a special case of the concept of in category theory. By working in the , that is by reverting the arrows, an inverse limit becomes a direct limit or inductive limit, and a limit becomes a colimit.