Concept

Pulsar-based navigation

X-ray pulsar-based navigation and timing (XNAV) or simply pulsar navigation is a navigation technique whereby the periodic X-ray signals emitted from pulsars are used to determine the location of a vehicle, such as a spacecraft in deep space. A vehicle using XNAV would compare received X-ray signals with a database of known pulsar frequencies and locations. Similar to GPS, this comparison would allow the vehicle to calculate its position accurately (±5 km). The advantage of using X-ray signals over radio waves is that X-ray telescopes can be made smaller and lighter. Experimental demonstrations have been reported in 2018. The Advanced Concepts Team of ESA studied in 2003 the feasibility of x-ray pulsar navigation in collaboration with the Universitat Politecnica de Catalunya in Spain. After the study, the interest in the XNAV technology within the European Space Agency was consolidated leading, in 2012, to two different and more detailed studies performed by GMV AEROSPACE AND DEFENCE (ES) and the National Physical Laboratory (UK). XPNAV 1 On 9 November 2016, the Chinese Academy of Sciences launched an experimental pulsar navigation satellite called XPNAV 1. XPNAV-1 has a mass of 240 kg, and is in a 493 km × 512 km, 97.41° orbit. XPNAV-1 will characterize 26 nearby pulsars for their pulse frequency and intensity to create a navigation database that could be used by future operational missions. The satellite is expected to operate for five to ten years. XPNAV-1 is the first pulsar navigation mission launched into orbit. SEXTANT SEXTANT (Station Explorer for X-ray Timing and Navigation Technology) is a NASA-funded project developed at the Goddard Space Flight Center that is testing XNAV on-orbit on board the International Space Station in connection with the NICER project, launched on 3 June 2017 on the SpaceX CRS-11 ISS resupply mission. If this is successful, XNAV may be used as secondary navigation technology for the planned Orion missions. In January 2018, X-ray navigation feasibility was demonstrated using NICER/SEXTANT on ISS.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.