Formal grammarIn formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics.
Empty stringIn formal language theory, the empty string, or empty word, is the unique string of length zero. Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ.
Production (computer science)A production or production rule in computer science is a rewrite rule specifying a symbol substitution that can be recursively performed to generate new symbol sequences. A finite set of productions is the main component in the specification of a formal grammar (specifically a generative grammar). The other components are a finite set of nonterminal symbols, a finite set (known as an alphabet) of terminal symbols that is disjoint from and a distinguished symbol that is the start symbol.
Backus–Naur formIn computer science, Backus–Naur form (ˌbækəs_ˈnaʊər) or Backus normal form (BNF) is a metasyntax notation for context-free grammars, often used to describe the syntax of languages used in computing, such as computer programming languages, document formats, instruction sets and communication protocols. It is applied wherever exact descriptions of languages are needed: for instance, in official language specifications, in manuals, and in textbooks on programming language theory.
Chomsky hierarchyThe Chomsky hierarchy (infrequently referred to as the Chomsky–Schützenberger hierarchy) in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a language's vocabulary (or alphabet) that are valid according to the language's syntax. Linguist Noam Chomsky theorized that four different classes of formal grammars existed that could generate increasingly complex languages.
Phrase structure grammarThe term phrase structure grammar was originally introduced by Noam Chomsky as the term for grammar studied previously by Emil Post and Axel Thue (Post canonical systems). Some authors, however, reserve the term for more restricted grammars in the Chomsky hierarchy: context-sensitive grammars or context-free grammars. In a broader sense, phrase structure grammars are also known as constituency grammars. The defining trait of phrase structure grammars is thus their adherence to the constituency relation, as opposed to the dependency relation of dependency grammars.
Regular grammarIn theoretical computer science and formal language theory, a regular grammar is a grammar that is right-regular or left-regular. While their exact definition varies from textbook to textbook, they all require that all production rules have at most one non-terminal symbol; that symbol is either always at the end or always at the start of the rule's right-hand side. Every regular grammar describes a regular language.
Context-free grammarIn formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form with a single nonterminal symbol, and a string of terminals and/or nonterminals ( can be empty). Regardless of which symbols surround it, the single nonterminal on the left hand side can always be replaced by on the right hand side.
Parsing expression grammarIn computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG.
Formal languageIn logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings of the language. Each string concatenated from symbols of this alphabet is called a word, and the words that belong to a particular formal language are sometimes called well-formed words or well-formed formulas.