A compressed-air vehicle (CAV) is a transport mechanism fueled by tanks of pressurized atmospheric gas and propelled by the release and expansion of the gas within a pneumatic motor.
CAV's have found application in torpedoes, locomotives used in situations where standard locomotives are a hazard, and early prototype submarines.
Compressed-air vehicles operate according to a thermodynamic process where air cools down when expanding and heats up when being compressed and those are thermal energy losses that drain the capacity factor, however with the recent developments in isothermal compressed air energy storage ICAES plants, compressed air storage has reached 4 times the capacity factor of lithium-ion batteries with 2.7Mj/kg or 3.6Mj/m3 and in 2020 there has been developments in ICAV car or isothermal compressed-air vehicle published by Dr. Reza Alizade Evrin from Ontario Tech University with a first prototype that uses low pressure air tanks and exhaust air recovery to power a paraffin heat exchanger system with a global energy efficiency of 74% (reaching 73–90% efficiency of lithium-ion electric cars) with a driving range of 140 km. This efficiency and range can be increased by using storage tank as vehicle chassis structure, high pressure tanks, new rotary engines, and a more efficient heat exchanger, this breakthrough together with the availability of recycled and bio-based thermoplastics for tanks and pneumatic components and renewable energy means this technology can be the basis of a free green transportation revolution with energy and circular industry decentralization with open source numerical control machines fabrication including additive manufacturing while multistage air compressors and coolers or hydraulic pumps can be attached directly to VAWT wind turbines, stirling engine with a parabolic or fresnel lens solar concentrator or river, tidal, wave hydropower turbine with no electric energy or electric grid needed nor energy conversion inefficiencies or additional energy storage, also instead of onboard heat recovery system there can be used a refillable molten salt (from fresnel lens or parabolic Concentrated solar power) reservoir in a heat exchanger system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students assess and compare all renewable energy resources, their real potentials, limitations and best applications (energy services). Solar thermal, solar electric, wood, bioliquids, biogas, hyd
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
An alternative fuel vehicle is a motor vehicle that runs on alternative fuel rather than traditional petroleum fuels (petrol or petrodiesel). The term also refers to any technology (e.g. electric cars, hybrid electric vehicles, solar-powered vehicles) powering an engine that does not solely involve petroleum. Because of a combination of factors, such as environmental concerns, high oil-prices and the potential for peak oil, development of cleaner alternative fuels and advanced power systems for vehicles has become a high priority for many governments and vehicle manufacturers around the world.
A pneumatic motor (air motor), or compressed air engine, is a type of motor which does mechanical work by expanding compressed air. Pneumatic motors generally convert the compressed air energy to mechanical work through either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor, piston air motor, air turbine or gear type motor.
Compressed-air energy storage (CAES) is a way to store energy for later use using compressed air. At a utility scale, energy generated during periods of low demand can be released during peak load periods. The first utility-scale CAES project has been built in Huntorf, Germany, and is still operational. The Huntorf plant was initially developed as a load balancer for fossil fuel-generated electricity, the global shift towards renewable energy renewed interest in CAES systems, to help highly intermittent energy sources like photovoltaics and wind satisfy fluctuating electricity demands.
A compressed air driven generator is proposed, where the pneumatic energy is converted into mechanical energy using two vane-type rotational actuators. The use of a second actuator with a higher displacement in order to produce a thermodynamic expansion al ...
Recently, a new thermally activated distortion with amplification (TADA) effect has been reported in red gold alloys caused by the A1 -> L1(0) phase transformation. The macroscopic amplification is due to the persistence of variant selection nucleated unde ...
A quantitative analysis of stress in indium tin oxide (ITO) films with varying thicknesses was conducted using high-precision stylus profilometry. The experimental results revealed a transition of the stress type from tensile to compressive as the ITO film ...