An apicoplast is a derived non-photosynthetic plastid found in most Apicomplexa, including Toxoplasma gondii, and Plasmodium falciparum and other Plasmodium spp. (parasites causing malaria), but not in others such as Cryptosporidium. It originated from algae through secondary endosymbiosis; there is debate as to whether this was a green or red alga. The apicoplast is surrounded by four membranes within the outermost part of the endomembrane system. The apicoplast hosts important metabolic pathways like fatty acid synthesis, isoprenoid precursor synthesis and parts of the heme biosynthetic pathway. Apicoplasts are a relict, nonphotosynthetic plastid found in most protozoan parasites belonging to the phylum Apicomplexa. Among the most infamous Apicomplexan parasites is Plasmodium falciparum, a causative agent of severe malaria. Because apicoplasts are vital to parasite survival, they provide an enticing target for antimalarial drugs. Specifically, apicoplasts' plant-like properties provide a target for herbicidal drugs. And, with the emergence of malarial strains resistant to current treatments it is paramount that novel therapies, like herbicides, are explored and understood. Furthermore, herbicides may be able to specifically target the parasite's plant-like apicoplast and without any noticeable effect on the mammalian host's cells. Evidence suggests that the apicoplast is a product of secondary endosymbiosis, and that the apicoplast may be homologous to the secondary plastid of the closely related dinoflagellate algae. An ancient cyanobacterium was first engulfed by a eukaryotic cell but was not digested. The bacterium escaped being digested because it formed a symbiotic relationship with the host eukaryotic cell; both the eukaryote and the bacterium mutually benefited from their novel shared existence. The result of the primary endosymbiosis was a photosynthetic eukaryotic alga. A descendant of this eukaryotic alga was then itself engulfed by a heterotrophic eukaryote with which it formed its own symbiotic relationship and was preserved as a plastid.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.