In probability, a singular distribution is a probability distribution concentrated on a set of Lebesgue measure zero, where the probability of each point in that set is zero. These distributions are sometimes called singular continuous distributions, since their cumulative distribution functions are singular and continuous. Such distributions are not absolutely continuous with respect to Lebesgue measure. A singular distribution is not a discrete probability distribution because each discrete point has a zero probability. On the other hand, neither does it have a probability density function, since the Lebesgue integral of any such function would be zero. In general, distributions can be described as a discrete distribution (with a probability mass function), an absolutely continuous distribution (with a probability density), a singular distribution (with neither), or can be decomposed into a mixture of these. An example is the Cantor distribution; its cumulative distribution function is a devil's staircase. Less curious examples appear in higher dimensions. For example, the upper and lower Fréchet–Hoeffding bounds are singular distributions in two dimensions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.