Power over Ethernet, or PoE, describes any of several standards or ad hoc systems that pass electric power along with data on twisted-pair Ethernet cabling. This allows a single cable to provide both a data connection and enough electricity to power devices such as wireless access points (WAPs), Internet Protocol (IP) cameras and voice over Internet Protocol (VoIP) phones. There are several common techniques for transmitting power over Ethernet cabling. Three of them have been standardized by the Institute of Electrical and Electronics Engineers (IEEE) standard IEEE 802.3 since 2003. These standards are known as alternative A, alternative B, and 4PPoE. Alternative A uses the same two of the four signal pairs that 10BASE-T and 100BASE-TX use for data in typical Cat 5 cabling. Alternative B separates the data and the power conductors, making troubleshooting easier. 4PPoE uses all four twisted pairs in parallel, increasing the achievable power. Alternative A transports power on the same wires as data for 10 and 100 Mbit/s Ethernet variants. This is similar to the phantom power technique commonly used for powering condenser microphones. Power is transmitted on the data conductors by applying a common voltage to each pair. Because twisted-pair Ethernet uses differential signaling, this does not interfere with data transmission. The common-mode voltage is easily extracted using the center tap of the standard Ethernet pulse transformer. For Gigabit Ethernet and faster, both alternatives A and B transport power on wire pairs also used for data since all four pairs are used for data transmission at these speeds. 4PPoE provides power using all four pairs of a twisted-pair cable. This enables higher power for applications like pan–tilt–zoom cameras (PTZ), high-performance WAPs, or even charging laptop batteries. In addition to standardizing existing practice for spare-pair (Alternative B), common-mode data pair power (Alternative A) and 4-pair transmission (4PPoE), the IEEE PoE standards provide for signaling between the power sourcing equipment (PSE) and powered device (PD).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
ME-427: Networked control systems
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Related publications (25)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.