A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream (such as air or process water). As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function. Chilled water is used to cool and dehumidify air in mid- to large-size commercial, industrial, and institutional facilities. Water cooled chillers can be liquid-cooled (through cooling towers), air-cooled, or evaporatively cooled. Water or liquid-cooled systems can provide efficiency and environmental impact advantages over air-cooled systems. In air conditioning systems, chilled coolant, usually chilled water mixed with ethylene glycol, from a chiller in an air conditioning or cooling plant is typically distributed to heat exchangers, or coils, in air handlers or other types of terminal devices which cool the air in their respective . The water is then recirculated to the chiller to be recooled. These cooling coils transfer sensible heat and latent heat from the air to the chilled water, thus cooling and usually dehumidifying the air stream. A typical chiller for air conditioning applications is rated between and , and at least two manufacturers (York international and LG) can produce chillers capable of up to cooling. Chilled water temperatures (leaving from the chiller) usually range from , depending upon application requirements.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-459: Heat pump systems
This course aims to study heat pumping cycles and technologies, and equipment, such as compressors (positive displacement and dynamic), heat exchangers, and expansion valves.
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
ME-460: Renewable energy (for ME)
The students assess and compare all renewable energy resources, their real potentials, limitations and best applications (energy services). Solar thermal, solar electric, wood, bioliquids, biogas, hyd
Show more
Related lectures (31)
Heat Pumps & Power Cycles
Discusses technical challenges in implementing the Carnot cycle, energy and exergy balances, and the advantages of exergy analysis.
Gas Refrigeration Systems
Explores gas refrigeration systems, including Brayton cycles and heat pumps, discussing principles, performance, and optimization approaches.
Geothermal Energy Systems: Principles and Applications
Provides an overview of geothermal energy systems, covering thermodynamic principles, heat pump technologies, and the classification of geothermal reservoirs.
Show more
Related publications (67)

Vapor compression and energy dissipation in a collapsing laser-induced bubble

Mohamed Farhat, Danail Obreschkow, Davide Bernardo Preso, Armand Baptiste Sieber

The composition of the gaseous phase of cavitation bubbles and its role on the collapse remains to date poorly understood. In this work, experiments of single cavitation bubbles in aqueous ammonia serve as a novel approach to investigate the effect of the ...
Melville2024

Violation-aware contextual Bayesian optimization for controller performance optimization with unmodeled constraints

Colin Neil Jones, Bratislav Svetozarevic, Wenjie Xu

We study the problem of performance optimization of closed -loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated to be effective for improving closed -loop performance by automatically tuning controller gains or re ...
Elsevier Sci Ltd2024

Selection and Optimal Use of Nanoporous Materials for Adsorption Energy Technologies

Emanuele Piccoli

Due to the large waste of heat in the power and industrial sectors, our use of energy is inefficient. Moreover, it relies on rapidly depleting and greenhouse-gas-emitting sources such as fossil fuels. While the scarcity of energy resources is a relevant so ...
EPFL2023
Show more
Related concepts (18)
Air conditioning
Air conditioning, often abbreviated as A/C (US), AC (US), or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as "comfort cooling") and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical air conditioner or alternatively a variety of other methods, including passive cooling or ventilative cooling.
Centrifugal compressor
Centrifugal compressors, sometimes called impeller compressors or radial compressors, are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. They achieve pressure rise by adding energy to the continuous flow of fluid through the rotor/impeller. The equation in the next section shows this specific energy input. A substantial portion of this energy is kinetic which is converted to increased potential energy/static pressure by slowing the flow through a diffuser.
Cooling tower
A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.