Summary
The quantum mind or quantum consciousness is a group of hypotheses proposing that classical mechanics alone cannot explain consciousness, positing instead that quantum-mechanical phenomena, such as entanglement and superposition, may play an important part in the brain's function and could explain critical aspects of consciousness. These scientific hypotheses are as yet untested, and can overlap with quantum mysticism. Eugene Wigner developed the idea that quantum mechanics has something to do with the workings of the mind. He proposed that the wave function collapses due to its interaction with consciousness. Freeman Dyson argued that "mind, as manifested by the capacity to make choices, is to some extent inherent in every electron". Other contemporary physicists and philosophers considered these arguments unconvincing. Victor Stenger characterized quantum consciousness as a "myth" having "no scientific basis" that "should take its place along with gods, unicorns and dragons". David Chalmers argues against quantum consciousness. He instead discusses how quantum mechanics may relate to dualistic consciousness. Chalmers is skeptical that any new physics can resolve the hard problem of consciousness. He argues that quantum theories of consciousness suffer from the same weakness as more conventional theories. Just as he argues that there is no particular reason why particular macroscopic physical features in the brain should give rise to consciousness, he also thinks that there is no particular reason why a particular quantum feature, such as the EM field in the brain, should give rise to consciousness either. David Bohm viewed quantum theory and relativity as contradictory, which implied a more fundamental level in the universe. He claimed that both quantum theory and relativity pointed to this deeper theory, which he formulated as a quantum field theory. This more fundamental level was proposed to represent an undivided wholeness and an implicate order, from which arises the explicate order of the universe as we experience it.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-468: Atomistic and quantum simulations of materials
Theory and application of quantum simulations to model, understand, and predict the properties of real materials.