Concept

Hydrodemolition

Summary
Hydrodemolition (also known as hydro demolition, hydroblasting, hydro blasting, hydromilling, waterblasting, and waterjetting) is a concrete removal technique which utilizes high-pressure water, often containing an abrasive material, to remove deteriorated and sound concrete as well as asphalt and grout. This process provides an excellent bonding surface for repair material and new coating applications. First developed in Europe in the 1980s, this technology has become widely accepted for concrete removal and surface preparation throughout Europe and North America. Hydrodemolition is not used as much for demolition as it is for surface restoration and protection projects. When concrete has deteriorated or the reinforcing steel has begun to corrode, it is necessary to remove any unsound concrete and reinforcing bars (rebar) in order to replace it with new concrete and maintain the integrity of the structure. This process has also been used to remove sound concrete that is not compromised in any way. This may be done to install a preventive cathodic protection system, or to remove concrete in structures in which vibration is a concern. Unlike jackhammers, hydrodemolition does not produce vibrations throughout a structure and therefore does not introduce micro fractures. “Hydrodemolition can be used for horizontal, vertical, and overhead concrete removal and surface preparation on reinforced and non-reinforced structures. It is effective in removing concrete from around embedded metal elements such as reinforcing steel, expansion joints, anchorages, conduits, shear connectors, and shear studs. Hydrodemolition can be used for localized removals where deterioration is confined to small areas and for large area removals in preparation for a bonded overlay. This technology can also be used to remove existing coatings from concrete.” The process of hydro scarification (a.k.a. hydroscarification or scarification) uses ultra high pressure water to remove the top surface of a concrete bridge or road surface.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.