Algebraic normal formIn Boolean algebra, the algebraic normal form (ANF), ring sum normal form (RSNF or RNF), Zhegalkin normal form, or Reed–Muller expansion is a way of writing propositional logic formulas in one of three subforms: The entire formula is purely true or false: One or more variables are combined into a term by AND (), then one or more terms are combined by XOR () together into ANF. Negations are not permitted: The previous subform with a purely true term: Formulas written in ANF are also known as Zhegalkin polynomials and Positive Polarity (or Parity) Reed–Muller expressions (PPRM).
Karnaugh mapThe Karnaugh map (KM or K-map) is a method of simplifying Boolean algebra expressions. Maurice Karnaugh introduced it in 1953 as a refinement of Edward W. Veitch's 1952 Veitch chart, which was a rediscovery of Allan Marquand's 1881 logical diagram aka Marquand diagram but with a focus now set on its utility for switching circuits. Veitch charts are also known as Marquand–Veitch diagrams or, rarely, as Svoboda charts, and Karnaugh maps as Karnaugh–Veitch maps (KV maps).
Zhegalkin polynomialZhegalkin (also Žegalkin, Gégalkine or Shegalkin) polynomials (полиномы Жегалкина), also known as algebraic normal form, are a representation of functions in Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient.
Propositional formulaIn propositional logic, a propositional formula is a type of syntactic formula which is well formed and has a truth value. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula. A propositional formula is constructed from simple propositions, such as "five is greater than three" or propositional variables such as p and q, using connectives or logical operators such as NOT, AND, OR, or IMPLIES; for example: (p AND NOT q) IMPLIES (p OR q).
Blake canonical formIn Boolean logic, a formula for a Boolean function f is in Blake canonical form (BCF), also called the complete sum of prime implicants, the complete sum, or the disjunctive prime form, when it is a disjunction of all the prime implicants of f. The Blake canonical form is a special case of disjunctive normal form. The Blake canonical form is not necessarily minimal (upper diagram), however all the terms of a minimal sum are contained in the Blake canonical form.
Logic optimizationLogic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.
Truth tableA truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid.
Boolean algebraIn mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
Disjunctive normal formIn boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or (in philosophical logic) a cluster concept. As a normal form, it is useful in automated theorem proving. A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction.
Boolean functionIn mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form , where is known as the Boolean domain and is a non-negative integer called the arity of the function.