Triple DESIn cryptography, Triple DES (3DES or TDES), officially the Triple Data Encryption Algorithm (TDEA or Triple DEA), is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The Data Encryption Standard's (DES) 56-bit key is no longer considered adequate in the face of modern cryptanalytic techniques and supercomputing power. A CVE released in 2016, CVE-2016-2183 disclosed a major security vulnerability in DES and 3DES encryption algorithms.
Key scheduleIn cryptography, the so-called product ciphers are a certain kind of cipher, where the (de-)ciphering of data is typically done as an iteration of rounds. The setup for each round is generally the same, except for round-specific fixed values called a round constant, and round-specific data derived from the cipher key called a round key. A key schedule is an algorithm that calculates all the round keys from the key. Some ciphers have simple key schedules.
Substitution–permutation networkIn cryptography, an SP-network, or substitution–permutation network (SPN), is a series of linked mathematical operations used in block cipher algorithms such as AES (Rijndael), 3-Way, Kalyna, Kuznyechik, PRESENT, SAFER, SHARK, and Square. Such a network takes a block of the plaintext and the key as inputs, and applies several alternating rounds or layers of substitution boxes (S-boxes) and permutation boxes (P-boxes) to produce the ciphertext block. The S-boxes and P-boxes transform of input bits into output bits.
Skipjack (cipher)In cryptography, Skipjack is a block cipher—an algorithm for encryption—developed by the U.S. National Security Agency (NSA). Initially classified, it was originally intended for use in the controversial Clipper chip. Subsequently, the algorithm was declassified. Skipjack was proposed as the encryption algorithm in a US government-sponsored scheme of key escrow, and the cipher was provided for use in the Clipper chip, implemented in tamperproof hardware.
Key (cryptography)A key in cryptography is a piece of information, usually a string of numbers or letters that are stored in a file, which, when processed through a cryptographic algorithm, can encode or decode cryptographic data. Based on the used method, the key can be different sizes and varieties, but in all cases, the strength of the encryption relies on the security of the key being maintained. A key's security strength is dependent on its algorithm, the size of the key, the generation of the key, and the process of key exchange.
Bruce SchneierBruce Schneier (ˈʃnaɪ.ər; born January 15, 1963) is an American cryptographer, computer security professional, privacy specialist, and writer. Schneier is a Lecturer in Public Policy at the Harvard Kennedy School and a Fellow at the Berkman Klein Center for Internet & Society as of November, 2013. He is a board member of the Electronic Frontier Foundation, Access Now, and The Tor Project; and an advisory board member of Electronic Privacy Information Center and VerifiedVoting.org.
RSA SecurityRSA Security LLC, formerly RSA Security, Inc. and doing business as RSA, is an American computer and network security company with a focus on encryption and encryption standards. RSA was named after the initials of its co-founders, Ron Rivest, Adi Shamir and Leonard Adleman, after whom the RSA public key cryptography algorithm was also named. Among its products is the SecurID authentication token. The BSAFE cryptography libraries were also initially owned by RSA. RSA is known for incorporating backdoors developed by the NSA in its products.
Lucifer (cipher)In cryptography, Lucifer was the name given to several of the earliest civilian block ciphers, developed by Horst Feistel and his colleagues at IBM. Lucifer was a direct precursor to the Data Encryption Standard. One version, alternatively named DTD-1, saw commercial use in the 1970s for electronic banking. Lucifer uses a combination of transposition and substitution crypting as a starting point in decoding ciphers. One variant, described by Feistel in 1971, uses a 48-bit key and operates on 48-bit blocks.
Serpent (cipher)Serpent is a symmetric key block cipher that was a finalist in the Advanced Encryption Standard (AES) contest, where it was ranked second to Rijndael. Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen. Like other AES submissions, Serpent has a block size of 128 bits and supports a key size of 128, 192 or 256 bits. The cipher is a 32-round substitution–permutation network operating on a block of four 32-bit words. Each round applies one of eight 4-bit to 4-bit S-boxes 32 times in parallel.
Clipper chipThe Clipper chip was a chipset that was developed and promoted by the United States National Security Agency (NSA) as an encryption device that secured "voice and data messages" with a built-in backdoor that was intended to "allow Federal, State, and local law enforcement officials the ability to decode intercepted voice and data transmissions." It was intended to be adopted by telecommunications companies for voice transmission. Introduced in 1993, it was entirely defunct by 1996.