A process control block (PCB), also sometimes called a process descriptor, is a data structure used by computer operating systems to store all the information about a process. When a process is created (initialized or installed), the operating system creates a corresponding process control block, which specifies and tracks the process state (i.e. new, ready, running, waiting or terminated). Since it is used to track process information, the PCB plays a key role in context switching. The role of the PCBs is central in process management: they are accessed and/or modified by most utilities, particularly those involved with scheduling and resource management. In multitasking operating systems, the PCB stores data needed for correct and efficient process management. Though the details of these structures are system-dependent, common elements fall in three main categories: Process identification Process state Process control Status tables exist for each relevant entity, like describing memory, I/O devices, files and processes. Memory tables, for example, contain information about the allocation of main and secondary (virtual) memory for each process, authorization attributes for accessing memory areas shared among different processes, etc. I/O tables may have entries stating the availability of a device or its assignment to a process, the status of I/O operations, the location of memory buffers used for them, etc. Process identification data include a unique identifier for the process (almost invariably an integer) and, in a multiuser-multitasking system, data such as the identifier of the parent process, user identifier, user group identifier, etc. The process id is particularly relevant since it is often used to cross-reference the tables defined above, e.g. showing which process is using which I/O devices, or memory areas. Process state data define the status of a process when it is suspended, allowing the OS to restart it later. This always includes the content of general-purpose CPU registers, the CPU process status word, stack and frame pointers, etc.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (5)
Related publications (3)
Related concepts (6)
Call stack
In computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages.
Linux kernel
The Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally written in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU operating system, which was written to be a free (libre) replacement for Unix. Linux is provided under the GNU General Public License version 2 only, but it contains files under other compatible licenses.
Process (computing)
In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes (even entire virtual machines) are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.